Abstract

Review Article

New insights of liquid biopsy in ovarian cancer

Panagiotis Antoniadis*, Florentina Alina Gheorghe, Madalina Ana Maria Nitu, Cezara Gabriela Nitu, Diana Roxana Constantinescu and Florentina Duica

Published: 29 September, 2022 | Volume 5 - Issue 1 | Pages: 001-011

Through the development of new analysis technologies, many issues regarding the approach to tumoral diseases have been elucidated. With analytical assays developed in the last years, various omics technologies have evolved in such a manner that the characteristics of tumor cells and products can be evaluated (assessed) in the bloodstream of cancer patients at different times. Ovarian Cancer (OC) is one of the most difficult to diagnose umors, with low survival rates due to the high heterogeneity of these diseases that are distinct in terms of etiology and molecular characteristics, but which simply share an anatomical appearance. Recent findings have indicated that several types of ovarian cancer classified into different histotypes are in fact derived from non-ovarian issues and share few molecular similarities. Within this context, ovarian cancer screening and diagnosis can be made through the evaluation of circulating tumor cells in peripheral blood using liquid biopsy technologies. Advances in the study of various molecules analyzed by liquid biopsy have shown that elucidation of intratumoural and intertumoural heterogeneity and spatial and temporal tumor evolution could be traced by serial blood tests rather than by histopathological analyses of tissue samples from a primary tumor. Therefore, evaluation of some molecules such as circulating tumor cells (CTC), circulating tumor DNA (ctDNA), circulating cell-free RNA (non-coding and mRNA, extracellular vesicles), tumor-educated platelets or different miRNAs using liquid biopsy could lead to improvement of patient management.

Read Full Article HTML DOI: 10.29328/journal.jgmgt.1001007 Cite this Article Read Full Article PDF

Keywords:

Liquid biopsy; CTCs; miRNA; cfDNA; Ovarian cancer

References

  1. Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010 Sep;177(3):1053-64. doi: 10.2353/ajpath.2010.100105. Epub 2010 Jul 22. PMID: 20651229; PMCID: PMC2928939.
  2. Naora H, Montell DJ. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat Rev Cancer. 2005 May;5(5):355-66. doi: 10.1038/nrc1611. PMID: 15864277.
  3. Cochrane DR, Tessier-Cloutier B, Lawrence KM, Nazeran T, Karnezis AN, Salamanca C, Cheng AS, McAlpine JN, Hoang LN, Gilks CB, Huntsman DG. Clear cell and endometrioid carcinomas: are their differences attributable to distinct cells of origin? J Pathol. 2017 Sep;243(1):26-36. doi: 10.1002/path.4934. Epub 2017 Aug 7. PMID: 28678427.
  4. Idrees R, Din NU, Siddique S, Fatima S, Abdul-Ghafar J, Ahmad Z. Ovarian seromucinous tumors: clinicopathological features of 10 cases with a detailed review of the literature. J Ovarian Res. 2021 Mar 18;14(1):47. doi: 10.1186/s13048-021-00796-y. PMID: 33736662; PMCID: PMC7977580.
  5. Brown J, Frumovitz M. Mucinous tumors of the ovary: current thoughts on diagnosis and management. Curr Oncol Rep. 2014 Jun;16(6):389. doi: 10.1007/s11912-014-0389-x. PMID: 24777667; PMCID: PMC4261626.
  6. Chandra A, Pius C, Nabeel M, Nair M, Vishwanatha JK, Ahmad S, Basha R. Ovarian cancer: Current status and strategies for improving therapeutic outcomes. Cancer Med. 2019 Nov;8(16):7018-7031. doi: 10.1002/cam4.2560. Epub 2019 Sep 27. PMID: 31560828; PMCID: PMC6853829.
  7. Macías M, Alegre E, Díaz-Lagares A, Patiño A, Pérez-Gracia JL, Sanmamed M, López-López R, Varo N, González A. Liquid Biopsy: From Basic Research to Clinical Practice. Adv Clin Chem. 2018;83:73-119. doi: 10.1016/bs.acc.2017.10.003. Epub 2017 Nov 23. PMID: 29304904.
  8. Asante DB, Calapre L, Ziman M, Meniawy TM, Gray ES. Liquid biopsy in ovarian cancer using circulating tumor DNA and cells: Ready for prime time? Cancer Lett. 2020 Jan 1;468:59-71. doi: 10.1016/j.canlet.2019.10.014. Epub 2019 Oct 11. PMID: 31610267.
  9. Asante DB, Calapre L, Ziman M, Meniawy TM, Gray ES. Liquid biopsy in ovarian cancer using circulating tumor DNA and cells: Ready for prime time? Cancer Lett. 2020 Jan 1;468:59-71. doi: 10.1016/j.canlet.2019.10.014. Epub 2019 Oct 11. PMID: 31610267.
  10. Connors D, Allen J, Alvarez JD, Boyle J, Cristofanilli M, Hiller C, Keating S, Kelloff G, Leiman L, McCormack R, Merino D, Morgan E, Pantel K, Rolfo C, Serrano MJ, Pia Sanzone A, Schlange T, Sigman C, Stewart M. International liquid biopsy standardization alliance white paper. Crit Rev Oncol Hematol. 2020 Dec;156:103112. doi: 10.1016/j.critrevonc.2020.103112. Epub 2020 Sep 30. PMID: 33035734.
  11. Keller L, Pantel K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat Rev Cancer. 2019 Oct;19(10):553-567. doi: 10.1038/s41568-019-0180-2. Epub 2019 Aug 27. PMID: 31455893.
  12. Chang L, Ni J, Zhu Y, Pang B, Graham P, Zhang H, Li Y. Liquid biopsy in ovarian cancer: recent advances in circulating extracellular vesicle detection for early diagnosis and monitoring progression. Theranostics. 2019 May 31;9(14):4130-4140. doi: 10.7150/thno.34692. PMID: 31281536; PMCID: PMC6592165.
  13. Giannopoulou L, Zavridou M, Kasimir-Bauer S, Lianidou ES. Liquid biopsy in ovarian cancer: the potential of circulating miRNAs and exosomes. Transl Res. 2019 Mar;205:77-91. doi: 10.1016/j.trsl.2018.10.003. Epub 2018 Oct 12. PMID: 30391474.
  14. Omer Devaja and Andreas Papadopoulos, INTECHOPEN LIMITED, Ovarian cancer- from pathogenesis to treatment; 2018; http://dx.doi.org/105772/66599
  15. Asante DB, Calapre L, Ziman M, Meniawy TM, Gray ES. Liquid biopsy in ovarian cancer using circulating tumor DNA and cells: Ready for prime time? Cancer Lett. 2020 Jan 1;468:59-71. doi: 10.1016/j.canlet.2019.10.014. Epub 2019 Oct 11. PMID: 31610267.https://doi.org/10.1016/j.canlet.2019.10.014
  16. Anfossi S. Clinical utility of circulating non-coding RNAs – an update. Nat. Rev. Clin. Oncol. 15 September (9), 2018;541–563. https://doi.org/10.1038/s41571- 018-0035-x
  17. 2022March2nd;Availablefrom:https://www.nibsc.org/science_and_research/advanced_therapies/genomic_reference_materials.aspx.
  18. Soler A, Cayrefourcq L, Mazard T, Babayan A, Lamy PJ, Assou S, Assenat E, Pantel K, Alix-Panabières C. Autologous cell lines from circulating colon cancer cells captured from sequential liquid biopsies as model to study therapy-driven tumor changes. Sci Rep. 2018 Oct 29;8(1):15931. doi: 10.1038/s41598-018-34365-z. PMID: 30374140; PMCID: PMC6206091.
  19. Poudineh M, Sargent EH, Pantel K, Kelley SO. Profiling circulating tumour cells and other biomarkers of invasive cancers. Nat Biomed Eng. 2018 Feb;2(2):72-84. doi: 10.1038/s41551-018-0190-5. Epub 2018 Feb 6. PMID: 31015625.
  20. Ashworth TR. A Case of Cancer in Which Cells Similar to Those in the Tumours Were Seen in the Blood after Death. The Medical Journal of Australia. 1869; 14:146-147.
  21. Cristofanilli M, Hayes DF, Budd GT, Ellis MJ, Stopeck A, Reuben JM, Doyle GV, Matera J, Allard WJ, Miller MC, Fritsche HA, Hortobagyi GN, Terstappen LW. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol. 2005 Mar 1;23(7):1420-30. doi: 10.1200/JCO.2005.08.140. Erratum in: J Clin Oncol. 2005 Jul 20;23(21):4808. PMID: 15735118.
  22. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007 Dec 20;450(7173):1235-9. doi: 10.1038/nature06385. PMID: 18097410; PMCID: PMC3090667.
  23. Antfolk M, Magnusson C, Augustsson P, Lilja H, Laurell T. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells. Anal Chem. 2015 Sep 15;87(18):9322-8. doi: 10.1021/acs.analchem.5b02023. Epub 2015 Sep 3. PMID: 26309066.
  24. Abdulla A, Liu W, Gholamipour-Shirazi A, Sun J, Ding X. High-Throughput Isolation of Circulating Tumor Cells Using Cascaded Inertial Focusing Microfluidic Channel. Anal Chem. 2018 Apr 3;90(7):4397-4405. doi: 10.1021/acs.analchem.7b04210. Epub 2018 Mar 20. PMID: 29537252.
  25. Tulley S, Zhao Q, Dong H, Pearl ML, Chen WT. Vita-Assay™ Method of Enrichment and Identification of Circulating Cancer Cells/Circulating Tumor Cells (CTCs). Methods Mol Biol. 2016;1406:107-19. doi: 10.1007/978-1-4939-3444-7_9. PMID: 26820949.
  26. Togo S, Katagiri N, Namba Y, Tulafu M, Nagahama K, Kadoya K, Takamochi K, Oh S, Suzuki K, Sakurai F, Mizuguchi H, Urata Y, Takahashi K. Sensitive detection of viable circulating tumor cells using a novel conditionally telomerase-selective replicating adenovirus in non-small cell lung cancer patients. Oncotarget. 2017 May 23;8(21):34884-34895. doi: 10.18632/oncotarget.16818. PMID: 28432274; PMCID: PMC5471019.
  27. de Wit S, van Dalum G, Terstappen LW. Detection of circulating tumor cells. Scientifica (Cairo). 2014;2014:819362. doi: 10.1155/2014/819362. Epub 2014 Jul 15. PMID: 25133014; PMCID: PMC4124199.
  28. Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V, et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc. 2014 Mar;9(3):694-710. doi: 10.1038/nprot.2014.044. Epub 2014 Feb 27. PMID: 24577360; PMCID: PMC4179254.
  29. Ferreira MM, Ramani VC, Jeffrey SS. Circulating tumor cell technologies. Mol Oncol. 2016 Mar;10(3):374-94. doi: 10.1016/j.molonc.2016.01.007. Epub 2016 Jan 28. PMID: 26897752; PMCID: PMC5528969.
  30. Friedlander TW, Ngo VT, Dong H, Premasekharan G, Weinberg V, Doty S, Zhao Q, Gilbert EG, Ryan CJ, Chen WT, Paris PL. Detection and characterization of invasive circulating tumor cells derived from men with metastatic castration-resistant prostate cancer. Int J Cancer. 2014 May 15;134(10):2284-93. doi: 10.1002/ijc.28561. Epub 2014 Jan 2. PMID: 24166007.
  31. Ramirez JM, Fehm T, Orsini M, Cayrefourcq L, Maudelonde T, Pantel K, Alix-Panabières C. Prognostic relevance of viable circulating tumor cells detected by EPISPOT in metastatic breast cancer patients. Clin Chem. 2014 Jan;60(1):214-21. doi: 10.1373/clinchem.2013.215079. Epub 2013 Nov 19. PMID: 24255082.
  32. Miyamoto DT, Lee RJ, Kalinich M, LiCausi JA, Zheng Y, et al. An RNA-Based Digital Circulating Tumor Cell Signature Is Predictive of Drug Response and Early Dissemination in Prostate Cancer. Cancer Discov. 2018 Mar;8(3):288-303. doi: 10.1158/2159-8290.CD-16-1406. Epub 2018 Jan 4. PMID: 29301747; PMCID: PMC6342192.
  33. Sparano J, O'Neill A, Alpaugh K, Wolff AC, Northfelt DW, Dang CT, Sledge GW, Miller KD. Association of Circulating Tumor Cells With Late Recurrence of Estrogen Receptor-Positive Breast Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2018 Dec 1;4(12):1700-1706. doi: 10.1001/jamaoncol.2018.2574. PMID: 30054636; PMCID: PMC6385891.
  34. Guo W, Sun YF, Shen MN, Ma XL, Wu J, et al. Circulating Tumor Cells with Stem-Like Phenotypes for Diagnosis, Prognosis, and Therapeutic Response Evaluation in Hepatocellular Carcinoma. Clin Cancer Res. 2018 May 1;24(9):2203-2213. doi: 10.1158/1078-0432.CCR-17-1753. Epub 2018 Jan 26. PMID: 29374055.
  35. Zhou Q, Geng Q, Wang L, Huang J, Liao M, Li Y, Ding Z, Yang S, Zhao H, Shen Q, Pan C, Lou J, Lu S, Chen C, Luo Q. Value of folate receptor-positive circulating tumour cells in the clinical management of indeterminate lung nodules: A non-invasive biomarker for predicting malignancy and tumour invasiveness. EBioMedicine. 2019 Mar;41:236-243. doi: 10.1016/j.ebiom.2019.02.028. Epub 2019 Mar 12. PMID: 30872130; PMCID: PMC6442989.
  36. Scher HI, Heller G, Molina A, Attard G, Danila DC, Jia X, Peng W, Sandhu SK, Olmos D, Riisnaes R, McCormack R, Burzykowski T, Kheoh T, Fleisher M, Buyse M, de Bono JS. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J Clin Oncol. 2015 Apr 20;33(12):1348-55. doi: 10.1200/JCO.2014.55.3487. Epub 2015 Mar 23. PMID: 25800753; PMCID: PMC4397279.
  37. Li Y, Gong J, Zhang Q, Lu Z, Gao J, Li Y, Cao Y, Shen L. Dynamic monitoring of circulating tumour cells to evaluate therapeutic efficacy in advanced gastric cancer. Br J Cancer. 2016 Jan 19;114(2):138-45. doi: 10.1038/bjc.2015.417. PMID: 26784122; PMCID: PMC4815805.
  38. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013 Aug;10(8):472-84. doi: 10.1038/nrclinonc.2013.110. Epub 2013 Jul 9. PMID: 23836314.
  39. Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015 Jan;61(1):112-23. doi: 10.1373/clinchem.2014.222679. Epub 2014 Nov 11. PMID: 25388429.
  40. Thompson JC, Yee SS, Troxel AB, Savitch SL, Fan R, et al. Detection of Therapeutically Targetable Driver and Resistance Mutations in Lung Cancer Patients by Next-Generation Sequencing of Cell-Free Circulating Tumor DNA. Clin Cancer Res. 2016 Dec 1;22(23):5772-5782. doi: 10.1158/1078-0432.CCR-16-1231. Epub 2016 Sep 6. PMID: 27601595; PMCID: PMC5448134.
  41. Cheng F, Su L, Qian C. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget. 2016 Jul 26;7(30):48832-48841. doi: 10.18632/oncotarget.9453. PMID: 27223063; PMCID: PMC5217053.
  42. Postel M, Roosen A, Laurent-Puig P, Taly V, Wang-Renault SF. Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: a cancer diagnostic perspective. Expert Rev Mol Diagn. 2018 Jan;18(1):7-17. doi: 10.1080/14737159.2018.1400384. Epub 2017 Nov 13. PMID: 29115895.
  43. Nunes SP, Diniz F, Moreira-Barbosa C, Constâncio V, Silva AV, Oliveira J, Soares M, Paulino S, Cunha AL, Rodrigues J, Antunes L, Henrique R, Jerónimo C. Subtyping Lung Cancer Using DNA Methylation in Liquid Biopsies. J Clin Med. 2019 Sep 19;8(9):1500. doi: 10.3390/jcm8091500. PMID: 31546933; PMCID: PMC6780554.
  44. Alix-Panabières C, Schwarzenbach H, Pantel K. Circulating tumor cells and circulating tumor DNA. Annu Rev Med. 2012;63:199-215. doi: 10.1146/annurev-med-062310-094219. Epub 2011 Nov 2. PMID: 22053740.
  45. Cheng H, Liu C, Jiang J, Luo G, Lu Y, Jin K, Guo M, Zhang Z, Xu J, Liu L, Ni Q, Yu X. Analysis of ctDNA to predict prognosis and monitor treatment responses in metastatic pancreatic cancer patients. Int J Cancer. 2017 May 15;140(10):2344-2350. doi: 10.1002/ijc.30650. Epub 2017 Mar 9. PMID: 28205231.
  46. Xu RH, Wei W, Krawczyk M, Wang W, Luo H, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater. 2017 Nov;16(11):1155-1161. doi: 10.1038/nmat4997. Epub 2017 Oct 9. PMID: 29035356.
  47. Corcoran RB, Chabner BA. Application of Cell-free DNA Analysis to Cancer Treatment. N Engl J Med. 2018 Nov 1;379(18):1754-1765. doi: 10.1056/NEJMra1706174. PMID: 30380390.
  48. Del Re M, Crucitta S, Gianfilippo G, Passaro A, Petrini I, Restante G, Michelucci A, Fogli S, de Marinis F, Porta C, Chella A, Danesi R. Understanding the Mechanisms of Resistance in EGFR-Positive NSCLC: From Tissue to Liquid Biopsy to Guide Treatment Strategy. Int J Mol Sci. 2019 Aug 14;20(16):3951. doi: 10.3390/ijms20163951. PMID: 31416192; PMCID: PMC6720634.
  49. Willis J, Lefterova MI, Artyomenko A, Kasi PM, Nakamura Y, et al. Validation of Microsatellite Instability Detection Using a Comprehensive Plasma-Based Genotyping Panel. Clin Cancer Res. 2019 Dec 1;25(23):7035-7045. doi: 10.1158/1078-0432.CCR-19-1324. Epub 2019 Aug 4. PMID: 31383735.
  50. Cheung KWE, Choi SR, Lee LTC, Lee NLE, Tsang HF, Cheng YT, Cho WCS, Wong EYL, Wong SCC. The potential of circulating cell free RNA as a biomarker in cancer. Expert Rev Mol Diagn. 2019 Jul;19(7):579-590. doi: 10.1080/14737159.2019.1633307. Epub 2019 Jun 24. PMID: 31215265.
  51. Lee I, Baxter D, Lee MY, Scherler K, Wang K. The Importance of Standardization on Analyzing Circulating RNA. Mol Diagn Ther. 2017 Jun;21(3):259-268. doi: 10.1007/s40291-016-0251-y. PMID: 28039578; PMCID: PMC5426982.
  52. Yeung DT, Hughes TP. Therapeutic targeting of BCR-ABL: prognostic markers of response and resistance mechanism in chronic myeloid leukaemia. Crit Rev Oncog. 2012;17(1):17-30. doi: 10.1615/critrevoncog.v17.i1.30. PMID: 22471662.
  53. Larson MH, Pan W, Kim HJ, Mauntz RE, Stuart SM, Pimentel M, Zhou Y, Knudsgaard P, Demas V, Aravanis AM, Jamshidi A. A comprehensive characterization of the cell-free transcriptome reveals tissue- and subtype-specific biomarkers for cancer detection. Nat Commun. 2021 Apr 21;12(1):2357. doi: 10.1038/s41467-021-22444-1. Erratum in: Nat Commun. 2022 May 4;13(1):2553. PMID: 33883548; PMCID: PMC8060291.
  54. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018 Nov 23;7(1):1535750. doi: 10.1080/20013078.2018.1535750. PMID: 30637094; PMCID: PMC6322352.
  55. Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in Exosome Isolation Techniques. Theranostics. 2017 Jan 26;7(3):789-804. doi: 10.7150/thno.18133. PMID: 28255367; PMCID: PMC5327650.
  56. Hu T, Wolfram J, Srivastava S. Extracellular Vesicles in Cancer Detection: Hopes and Hypes. Trends Cancer. 2021 Feb;7(2):122-133. doi: 10.1016/j.trecan.2020.09.003. Epub 2020 Sep 30. PMID: 33008796.
  57. Zhou B, Xu K, Zheng X, Chen T, Wang J, Song Y, Shao Y, Zheng S. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther. 2020 Aug 3;5(1):144. doi: 10.1038/s41392-020-00258-9. PMID: 32747657; PMCID: PMC7400738.
  58. Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol. 2018 Oct 11;11(1):125. doi: 10.1186/s13045-018-0669-2. PMID: 30305116; PMCID: PMC6180572.
  59. Asghar S, Parvaiz F, Manzoor S. Multifaceted role of cancer educated platelets in survival of cancer cells. Thromb Res. 2019 May;177:42-50. doi: 10.1016/j.thromres.2019.02.026. Epub 2019 Feb 26. PMID: 30849514.
  60. Buergy D, Wenz F, Groden C, Brockmann MA. Tumor-platelet interaction in solid tumors. Int J Cancer. 2012 Jun 15;130(12):2747-60. doi: 10.1002/ijc.27441. Epub 2012 Feb 28. PMID: 22261860.
  61. In 't Veld SGJG, Wurdinger T. Tumor-educated platelets. Blood. 2019 May 30;133(22):2359-2364. doi: 10.1182/blood-2018-12-852830. Epub 2019 Mar 4. PMID: 30833413.
  62. Best MG, Wesseling P, Wurdinger T. Tumor-Educated Platelets as a Noninvasive Biomarker Source for Cancer Detection and Progression Monitoring. Cancer Res. 2018 Jul 1;78(13):3407-3412. doi: 10.1158/0008-5472.CAN-18-0887. Epub 2018 Jun 19. PMID: 29921699.
  63. Zhang Q, Liu H, Zhu Q, Zhan P, Zhu S, Zhang J, Lv T, Song Y. Patterns and functional implications of platelets upon tumor "education". Int J Biochem Cell Biol. 2017 Sep;90:68-80. doi: 10.1016/j.biocel.2017.07.018. Epub 2017 Jul 25. PMID: 28754316.
  64. Tjon-Kon-Fat LA, Sol N, Wurdinger T, Nilsson RJA. Platelet RNA in Cancer Diagnostics. Semin Thromb Hemost. 2018 Mar;44(2):135-141. doi: 10.1055/s-0037-1606182. Epub 2017 Sep 13. PMID: 28905353.
  65. Cochrane DR, Tessier-Cloutier B, Lawrence KM, Nazeran T, Karnezis AN, Salamanca C, Cheng AS, McAlpine JN, Hoang LN, Gilks CB, Huntsman DG. Clear cell and endometrioid carcinomas: are their differences attributable to distinct cells of origin? J Pathol. 2017 Sep;243(1):26-36. doi: 10.1002/path.4934. Epub 2017 Aug 7. PMID: 28678427.
  66. Idrees R, Din NU, Siddique S, Fatima S, Abdul-Ghafar J, Ahmad Z. Ovarian seromucinous tumors: clinicopathological features of 10 cases with a detailed review of the literature. J Ovarian Res. 2021 Mar 18;14(1):47. doi: 10.1186/s13048-021-00796-y. PMID: 33736662; PMCID: PMC7977580.
  67. Deb B, Uddin A, Chakraborty S. miRNAs and ovarian cancer: An overview. J Cell Physiol. 2018 May;233(5):3846-3854. doi: 10.1002/jcp.26095. Epub 2017 Aug 25. PMID: 28703277.
  68. Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem. 2009 Jul 3;284(27):17897-901. doi: 10.1074/jbc.R900012200. Epub 2009 Apr 1. PMID: 19342379; PMCID: PMC2709356.
  69. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Ménard S, Croce CM. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007 Sep 15;67(18):8699-707. doi: 10.1158/0008-5472.CAN-07-1936. PMID: 17875710.
  70. Prahm KP, Høgdall C, Karlsen MA, Christensen IJ, Novotny GW, Knudsen S, Hansen A, Jensen PB, Jensen T, Mirza MR, Ekmann-Gade AW, Nedergaard L, Høgdall E. Clinical validation of chemotherapy predictors developed on global microRNA expression in the NCI60 cell line panel tested in ovarian cancer. PLoS One. 2017 Mar 23;12(3):e0174300. doi: 10.1371/journal.pone.0174300. PMID: 28334047; PMCID: PMC5363866.
  71. Gov E, Kori M, Arga KY. Multiomics Analysis of Tumor Microenvironment Reveals Gata2 and miRNA-124-3p as Potential Novel Biomarkers in Ovarian Cancer. OMICS. 2017 Oct;21(10):603-615. doi: 10.1089/omi.2017.0115. Epub 2017 Sep 22. PMID: 28937943.
  72. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008 Jul;110(1):13-21. doi: 10.1016/j.ygyno.2008.04.033. Erratum in: Gynecol Oncol. 2010 Jan;116(1):153. PMID: 18589210.
  73. Nakamura K, Sawada K, Yoshimura A, Kinose Y, Nakatsuka E, Kimura T. Clinical relevance of circulating cell-free microRNAs in ovarian cancer. Mol Cancer. 2016 Jun 24;15(1):48. doi: 10.1186/s12943-016-0536-0. PMID: 27343009; PMCID: PMC4921011.
  74. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10513-8. doi: 10.1073/pnas.0804549105. Epub 2008 Jul 28. PMID: 18663219; PMCID: PMC2492472.
  75. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci U S A. 2008 May 13;105(19):7004-9. doi: 10.1073/pnas.0801615105. Epub 2008 May 5. PMID: 18458333; PMCID: PMC2383982.
  76. Zhang DZ, Lau KM, Chan ES, Wang G, Szeto CC, Wong K, Choy RK, Ng CF. Cell-free urinary microRNA-99a and microRNA-125b are diagnostic markers for the non-invasive screening of bladder cancer. PLoS One. 2014 Jul 11;9(7):e100793. doi: 10.1371/journal.pone.0100793. PMID: 25014919; PMCID: PMC4094487.
  77. Xu C, Zeng Q, Xu W, Jiao L, Chen Y, Zhang Z, Wu C, Jin T, Pan A, Wei R, Yang B, Sun Y. miRNA-100 inhibits human bladder urothelial carcinogenesis by directly targeting mTOR. Mol Cancer Ther. 2013 Feb;12(2):207-19. doi: 10.1158/1535-7163.MCT-12-0273. Epub 2012 Dec 27. PMID: 23270926.
  78. Kapetanakis NI, Uzan C, Jimenez-Pailhes AS, Gouy S, Bentivegna E, Morice P, Caron O, Gourzones-Dmitriev C, Le Teuff G, Busson P. Plasma miR-200b in ovarian carcinoma patients: distinct pattern of pre/post-treatment variation compared to CA-125 and potential for prediction of progression-free survival. Oncotarget. 2015 Nov 3;6(34):36815-24. doi: 10.18632/oncotarget.5766. PMID: 26416421; PMCID: PMC4742212.
  79. Au Yeung CL, Co NN, Tsuruga T, Yeung TL, Kwan SY, Leung CS, Li Y, Lu ES, Kwan K, Wong KK, Schmandt R, Lu KH, Mok SC. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016 Mar 29;7:11150. doi: 10.1038/ncomms11150. PMID: 27021436; PMCID: PMC4820618.
  80. Sun Y, Hu L, Zheng H, Bagnoli M, Guo Y, Rupaimoole R, Rodriguez-Aguayo C, Lopez-Berestein G, Ji P, Chen K, Sood AK, Mezzanzanica D, Liu J, Sun B, Zhang W. MiR-506 inhibits multiple targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. J Pathol. 2015 Jan;235(1):25-36. doi: 10.1002/path.4443. Epub 2014 Nov 6. PMID: 25230372; PMCID: PMC4268369.
  81. Ghahhari NM, Babashah S. Interplay between microRNAs and WNT/β-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. Eur J Cancer. 2015 Aug;51(12):1638-49. doi: 10.1016/j.ejca.2015.04.021. Epub 2015 May 26. PMID: 26025765.
  82. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Ménard S, Croce CM. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007 Sep 15;67(18):8699-707. doi: 10.1158/0008-5472.CAN-07-1936. PMID: 17875710.
  83. Rhodes LV, Martin EC, Segar HC, Miller DF, Buechlein A, Rusch DB, Nephew KP, Burow ME, Collins-Burow BM. Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer. Oncotarget. 2015 Jun 30;6(18):16638-52. doi: 10.18632/oncotarget.3184. PMID: 26062653; PMCID: PMC4599295.
  84. Bendoraite A, Knouf EC, Garg KS, Parkin RK, Kroh EM, O'Briant KC, Ventura AP, Godwin AK, Karlan BY, Drescher CW, Urban N, Knudsen BS, Tewari M. Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. Gynecol Oncol. 2010 Jan;116(1):117-25. doi: 10.1016/j.ygyno.2009.08.009. Epub 2009 Oct 24. PMID: 19854497; PMCID: PMC2867670.
  85. Sestito R, Cianfrocca R, Tocci P, Rosanò L, Sacconi A, Blandino G, Bagnato A. Targeting endothelin 1 receptor-miR-200b/c-ZEB1 circuitry blunts metastatic progression in ovarian cancer. Commun Biol. 2020 Nov 13;3(1):677. doi: 10.1038/s42003-020-01404-3. PMID: 33188287; PMCID: PMC7666224.
  86. Zamaraev AV, Volik PI, Sukhikh GT, Kopeina GS, Zhivotovsky B. Long non-coding RNAs: A view to kill ovarian cancer. Biochim Biophys Acta Rev Cancer. 2021 Aug;1876(1):188584. doi: 10.1016/j.bbcan.2021.188584. Epub 2021 Jun 19. PMID: 34157315.
  87. Zhou M, Wang X, Shi H, Cheng L, Wang Z, Zhao H, Yang L, Sun J. Characterization of long non-coding RNA-associated ceRNA network to reveal potential prognostic lncRNA biomarkers in human ovarian cancer. Oncotarget. 2016 Mar 15;7(11):12598-611. doi: 10.18632/oncotarget.7181. PMID: 26863568; PMCID: PMC4914307.
  88. Schwarzenbach H, Gahan PB. Circulating non-coding RNAs in recurrent and metastatic ovarian cancer. Cancer Drug Resist. 2019 Sep 19;2(3):399-418. doi: 10.20517/cdr.2019.51. PMID: 35582568; PMCID: PMC8992516.
  89. Oliveira DVNP, Prahm KP, Christensen IJ, Hansen A, Høgdall CK, Høgdall EV. Noncoding RNA (ncRNA) Profile Association with Patient Outcome in Epithelial Ovarian Cancer Cases. Reprod Sci. 2021 Mar;28(3):757-765. doi: 10.1007/s43032-020-00372-7. Epub 2020 Oct 30. PMID: 33125686; PMCID: PMC7862201.
  90. Dianatpour A, Ghafouri-Fard S. Long Non Coding RNA Expression Intersecting Cancer and Spermatogenesis: A Systematic Review. Asian Pac J Cancer Prev. 2017 Oct 26;18(10):2601-2610. doi: 10.22034/APJCP.2017.18.10.2601. PMID: 29072050; PMCID: PMC5747377.
  91. Wang R, Lu X, Yu R. Lycopene Inhibits Epithelial-Mesenchymal Transition and Promotes Apoptosis in Oral Cancer via PI3K/AKT/m-TOR Signal Pathway. Drug Des Devel Ther. 2020 Jun 24;14:2461-2471. doi: 10.2147/DDDT.S251614. PMID: 32606612; PMCID: PMC7321693.
  92. Seyed Hosseini E, Nikkhah A, Sotudeh A, Alizadeh Zarei M, Izadpanah F, Nikzad H, Haddad Kashani H. The impact of LncRNA dysregulation on clinicopathology and survival of pancreatic cancer: a systematic review and meta-analysis (PRISMA compliant). Cancer Cell Int. 2021 Aug 23;21(1):447. doi: 10.1186/s12935-021-02125-1. PMID: 34425840; PMCID: PMC8383355.
  93. Shabaninejad Z, Vafadar A, Movahedpour A, Ghasemi Y, Namdar A, Fathizadeh H, Pourhanifeh MH, Savardashtaki A, Mirzaei H. Circular RNAs in cancer: new insights into functions and implications in ovarian cancer. J Ovarian Res. 2019 Sep 3;12(1):84. doi: 10.1186/s13048-019-0558-5. PMID: 31481095; PMCID: PMC6724287.
  94. Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, Mesteri I, Grunt TW, Zeillinger R, Pils D. Correlation of circular RNA abundance with proliferation--exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep. 2015 Jan 27;5:8057. doi: 10.1038/srep08057. PMID: 25624062; PMCID: PMC4306919.
  95. Yang X, Mei J, Wang H, Gu D, Ding J, Liu C. The emerging roles of circular RNAs in ovarian cancer. Cancer Cell Int. 2020 Jun 23;20:265. doi: 10.1186/s12935-020-01367-9. PMID: 32587475; PMCID: PMC7313187.
  96. Ning L, Long B, Zhang W, Yu M, Wang S, Cao D, Yang J, Shen K, Huang Y, Lang J. Circular RNA profiling reveals circEXOC6B and circN4BP2L2 as novel prognostic biomarkers in epithelial ovarian cancer. Int J Oncol. 2018 Dec;53(6):2637-2646. doi: 10.3892/ijo.2018.4566. Epub 2018 Sep 20. PMID: 30272264.
  97. Peng EY, Shu Y, Wu Y, Zeng F, Tan S, Deng Y, Deng Y, Chen H, Zhu L, Xu H. Presence and diagnostic value of circulating tsncRNA for ovarian tumor. Mol Cancer. 2018 Nov 22;17(1):163. doi: 10.1186/s12943-018-0910-1. PMID: 30466461; PMCID: PMC6251159.
  98. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep 6;489(7414):57-74. doi: 10.1038/nature11247. PMID: 22955616; PMCID: PMC3439153.
  99. Fatima F, Nawaz M. Vesiculated Long Non-Coding RNAs: Offshore Packages Deciphering Trans-Regulation between Cells, Cancer Progression and Resistance to Therapies. Noncoding RNA. 2017 Feb 23;3(1):10. doi: 10.3390/ncrna3010010. PMID: 29657282; PMCID: PMC5831998.
  100. Li J, Ju J, Ni B, Wang H. The emerging role of miR-506 in cancer. Oncotarget. 2016 Sep 20;7(38):62778-62788. doi: 10.18632/oncotarget.11294. PMID: 27542202; PMCID: PMC5308765.
  101. Luo J, Zhu C, Wang H, Yu L, Zhou J. MicroRNA-126 affects ovarian cancer cell differentiation and invasion by modulating expression of vascular endothelial growth factor. Oncol Lett. 2018 Apr;15(4):5803-5808. doi: 10.3892/ol.2018.8025. Epub 2018 Feb 12. PMID: 29552211; PMCID: PMC5840569.
  102. Chung S. False-positive elevations in carcinoembryonic antigen levels at a health screening center. 2019; 9:146. https://doi.org/10.3343/lmo.2019.9.3.146
  103. Wang HY, Hsieh CH, Wen CN, Wen YH, Chen CH, Lu JJ. Cancers Screening in an Asymptomatic Population by Using Multiple Tumour Markers. PLoS One. 2016 Jun 29;11(6):e0158285. doi: 10.1371/journal.pone.0158285. PMID: 27355357; PMCID: PMC4927114.
  104. Gawel SH, Jackson L, Jeanblanc N, Davis GJ. Current and future opportunities for liquid biopsy of circulating biomarkers to aid in early cancer detection. J Cancer Metastasis Treat.2022; 8:26. http://dx.doi.org/10.20517/2394-4722.2022.13
  105. Gray JW, Collins C. Genome changes and gene expression in human solid tumors. Carcinogenesis. 2000 Mar;21(3):443-52. doi: 10.1093/carcin/21.3.443. PMID: 10688864.
  106. Mio C, Damante G. Challenges in promoter methylation analysis in the new era of translational oncology: a focus on liquid biopsy. Biochim Biophys Acta Mol Basis Dis. 2022 Jun 1;1868(6):166390. doi: 10.1016/j.bbadis.2022.166390. Epub 2022 Mar 14. PMID: 35296416.

Figures:

Figure 1

Figure 1

Similar Articles

  • New insights of liquid biopsy in ovarian cancer
    Panagiotis Antoniadis*, Florentina Alina Gheorghe, Madalina Ana Maria Nitu, Cezara Gabriela Nitu, Diana Roxana Constantinescu and Florentina Duica Panagiotis Antoniadis*,Florentina Alina Gheorghe,Madalina Ana Maria Nitu,Cezara Gabriela Nitu,Diana Roxana Constantinescu,Florentina Duica. New insights of liquid biopsy in ovarian cancer. . 2022 doi: 10.29328/journal.jgmgt.1001007; 5: 001-011
  • Germline BRCA1 Mutation inSquamous Cell Carcinoma of Oesophagus: Driver versus Passenger Mutation
    Amrit Kaur Kaler*, Shraddha Manoj Upadhyay, Nandini Shyamali Bora, Ankita Nikam, Kavya P, Nivetha Athikeri, Dattatray B Solanki, Imran Shaikh and Rajesh Mistry Amrit Kaur Kaler*, Shraddha Manoj Upadhyay, Nandini Shyamali Bora, Ankita Nikam, Kavya P, Nivetha Athikeri, Dattatray B Solanki, Imran Shaikh, Rajesh Mistry. Germline BRCA1 Mutation inSquamous Cell Carcinoma of Oesophagus: Driver versus Passenger Mutation. . 2024 doi: 10.29328/journal.jgmgt.1001011; 7: 015-019

Recently Viewed

  • Synthesis of Carbon Nano Fiber from Organic Waste and Activation of its Surface Area
    Himanshu Narayan*, Brijesh Gaud, Amrita Singh and Sandesh Jaybhaye Himanshu Narayan*,Brijesh Gaud,Amrita Singh,Sandesh Jaybhaye. Synthesis of Carbon Nano Fiber from Organic Waste and Activation of its Surface Area. Int J Phys Res Appl. 2019: doi: 10.29328/journal.ijpra.1001017; 2: 056-059
  • Obesity Surgery in Spain
    Aniceto Baltasar* Aniceto Baltasar*. Obesity Surgery in Spain. New Insights Obes Gene Beyond. 2020: doi: 10.29328/journal.niogb.1001013; 4: 013-021
  • Tamsulosin and Dementia in old age: Is there any relationship?
    Irami Araújo-Filho*, Rebecca Renata Lapenda do Monte, Karina de Andrade Vidal Costa and Amália Cinthia Meneses Rêgo Irami Araújo-Filho*,Rebecca Renata Lapenda do Monte,Karina de Andrade Vidal Costa,Amália Cinthia Meneses Rêgo. Tamsulosin and Dementia in old age: Is there any relationship?. J Neurosci Neurol Disord. 2019: doi: 10.29328/journal.jnnd.1001025; 3: 145-147
  • Case Report: Intussusception in an Infant with Respiratory Syncytial Virus (RSV) Infection and Post-Operative Wound Dehiscence
    Lamin Makalo*, Orlianys Ruiz Perez, Benjamin Martin, Cherno S Jallow, Momodou Lamin Jobarteh, Alagie Baldeh, Abdul Malik Fye, Fatoumatta Jitteh and Isatou Bah Lamin Makalo*,Orlianys Ruiz Perez,Benjamin Martin,Cherno S Jallow,Momodou Lamin Jobarteh,Alagie Baldeh,Abdul Malik Fye,Fatoumatta Jitteh,Isatou Bah. Case Report: Intussusception in an Infant with Respiratory Syncytial Virus (RSV) Infection and Post-Operative Wound Dehiscence. J Community Med Health Solut. 2025: doi: 10.29328/journal.jcmhs.1001051; 6: 001-004
  • The prevalence and risk factors of chronic kidney disease among type 2 diabetes mellitus follow-up patients at Debre Berhan Referral Hospital, Central Ethiopia
    Getaneh Baye Mulu, Worku Misganew Kebede, Fetene Nigussie Tarekegn, Abayneh Shewangzaw Engida, Migbaru Endawoke Tiruye, Mulat Mossie Menalu, Yalew Mossie, Wubshet Teshome and Bantalem Tilaye Atinafu* Getaneh Baye Mulu,Worku Misganew Kebede,Fetene Nigussie Tarekegn,Abayneh Shewangzaw Engida,Migbaru Endawoke Tiruye,Mulat Mossie Menalu,Yalew Mossie,Wubshet Teshome,Bantalem Tilaye Atinafu*. The prevalence and risk factors of chronic kidney disease among type 2 diabetes mellitus follow-up patients at Debre Berhan Referral Hospital, Central Ethiopia. J Clini Nephrol. 2023: doi: 10.29328/journal.jcn.1001104; 7: 025-031

Read More

Most Viewed

Read More

Help ?